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Small-strain moduli reported in the literature for polydimethylsiloxane (PDMS) model networks have been 
critically re-examined, with account being taken of recent studies which have demonstrated the occurrence 
of significant side reactions in hydrosilylations. When the effects of such side reactions on network structure 
parameters are properly taken into account, the elasticity results can be well explained using the recent 
molecular theory of Flory and Erman. The revised calculations show a transition in the modulus from the 
affine to the phantom limit of deformation as the degree of chemical crosslinking increases. This is to be 
expected when the constraints on the fluctuation of junctions vanish (because of the decreased interspersion 
of chains), and such constraints are expected to vanish even in the small-strain region when the chains are 
sufficiently short. In lieu of carefully controlled reactions with well-defined stoichiometries, it appears that 
the procedure best suited for testing the various theories of rubber-like elasticity is a plot of the modulus 
G (as approximated by the sum 2C1 + 2C2 of the Mooney-Rivlin constants) against the phantom modulus 
[f*]ph (as approximated by 2C0. Also of importance is the difference between the 'effective' number of 
network chains v (relevant to theory) and the commonly used 'active' number of chains va. 
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I N T R O D U C T I O N  

In recent years, a considerable number of studies have been 
carried out on model networks of polydimethylsiloxane 
(PDMS). A central goal of these studies is to test 
the applicability of the various theories of rubber- 
like elasticity. By employing end-linking reactions, 
the number of strands between junctions and the 
functionalities of the junctions can be controlled. 
These techniques usually involve the reaction between 
bifunctionally terminated polymer chains and multi- 
functional end-linking agents having a functionality ~0/> 3. 

The traditional theories of rubber-like elasticity have 
been developed on the basis of network chains being 
simple Gaussian random coils. Models of elastomers in 
the 'phantom' network limit (in which the chains are 
assumed to be devoid of material properties) were first 
developed by James and Guth 1. The term phantom was 
used to emphasize that the configurations available to 
each network chain depend only on the position of 
its ends and to be otherwise independent of the 
configurations of neighbouring chains with which they 
share the same region of space. In such a phantom 
network, it is assumed that crosslinking does not 
influence the distribution of end-to-end distances in the 
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undeformed state, that the chains move freely through 
one another, and that the only contribution to the 
elasticity of the network is from the network connectivity. 
James and Guth 1 assumed also that the network is 
connected to a set of fixed surface junctions that preserve 
its volume. Junctions inside the elastomer are free to 
fluctuate around their well-defined, mean (time-averaged) 
positions. Fluctuations of the junctions are strain 
independent, whereas all the time-averaged vectors 
transform affinely with applied macroscopic strain. The 
theory has been successful in many respects, but some 
aspects of stress-strain behaviour differ significantly from 
its predictions. 

In an affine network z-4, on the other hand, the 
end-to-end chain vectors are assumed to transform 
affinely (linearly) with macroscopic deformation. Fluctu- 
ations of the junctions are completely suppressed by local 
intermolecular entangling with neighbouring chains 
sharing the same region of space. 

The role of trapped entanglements on the mechanical 
properties at equilibrium has been the subject of 
conflicting opinions TM. Macosko and co-workers 5-tz, 
Ferry 13, Langley TM, Graessley and co-workers ~s'~6, 
Merrill and co-workers 17-19, Opperman and Rennar 2°, 
and Edwards 2t have argued that in the limit of small 
strains, trapped entanglements contribute to the modulus. 
This is thought to be due to the large amount of overlap 
existing in the domains pervaded by neighbouring strands 



Small-strain modufi of PDMS model networks: M. A. Sharaf and J. E. Mark 

wherein chains cannot pass through the contours of other 
chains13 16. Hence, it follows that the configurations of 
neighbouring chains may well depend on one another, 
producing additional contributions to the partition 
function 13-16. In other words, discrete entanglements 
consisting of well-defined loops of one chain about 
another are thought to act as crosslinks between the 
chains thus entwined. If the chains are crosslinked, it can 
be argued that a portion of the interaction that 
contributed to the plateau modulus will not relax out 
and, thus, will increase the network modulus 13 16. 
Interpretation of a comprehensive array of data confined 
to the region of small strain, has led many investigators 
to argue, compellingly, that in this region discrete 
(trapped) entanglements are present along the chain 
contours and contribute directly to the modulus 5-21. 

The phantom and aitine limits of deformation are two 
extreme cases, and experimental stress-strain measurements 
suggest that real networks exhibit properties between 
these two limits 1'4"32-36. The suggestion of a gradual 
transition between affine and phantom limits with 
increasing deformation, in terms of decreasing inter- 
molecular entanglements among the chains, was first 
suggested by Ronca and Allegra 32. More recently, a 
comprehensive molecular theory for real networks based 
on this idea was formulated by Flory and Erman 33-36. 
One of the major premises of the theory is that local 
intermolecular entanglements and steric constraints on 
the fluctuations of junctions contribute to the modulus 
at intermediate deformations. It was emphasized that the 
constraints on junctions are due to 'diffuse' elastic 
entanglements of chains with their neighbours, and are 
diminished by swelling 33-36. In further elaboration, 
the chains pendent at a given junction must adopt 
configurations that are free of spatial overlaps with 
neighbouring chains and associated junctions with 
which they share the same region of space. Extensive 
interpenetration of different portions of the network that 
are topologically remote implies chains and junctions are 
inextricably involved 33-36. Accordingly, fluctuations of 
the junctions about their mean positions are restricted 
on this account. The constraints postulated here depend 
on the number of eligible configurations available to the 
system. Therefore, they are operative at equilibrium as 
opposed to the discrete entanglements often proposed to 
interpret the time-dependent behaviour of polymers 33-36. 

At least some experimental results suggest there is no 
significant augmentation to the large-strain modulus 
from trapped entanglements 22-31, and that these moduli 
can generally be well interpreted simply from the 
Flory-Erman theory 33-36. After some of these experiments 
had been carried out, however, a better understanding 
was obtained of the hydrosilylation cure often used 
in the preparation of model PDMS networks. In 
particular, Macosko and Saam ~1 used vinyl-terminated 
polyisobutylene to explore this issue, even though the 
reactions were previously considered to be straightforward 
and almost free of side reactions. They observed, instead, 
two major side reactions. The first consumes Si-H groups 
to give redistributed siloxane groups in the resulting 
polymer, as well as gaseous silanes and siloxanes as 
by-products. The other side reaction, on the other hand, 
results in a loss of reactivity of some vinyl groups owing 
to their shift to an internal position within the chain. 
These side reactions were reported to be important when 
experiments were conducted at high temperatures x1,37. 

The maximum value of the modulus of networks prepared 
in this way was found to occur at a value of the 
stoichiometric ratio r,,~l.2 (where r is the initial 
molar ratio of Si-H groups to vinyl groups) 5'9'38. The 
effects of this stoichiometric imbalance were properly 
accounted for when the side reactions were taken into 
consideration11. 

In a number of previous studies, the maximum value 
of the modulus for trifunctional and tetrafunctional 
PDMS networks were obtained at values of r of 
,-~ 1.1-1.35'9'38. In the absence of significant side reactions, 
it is expected that balanced stoichiometry (r = 1.0) should 
lead to a network having complete end linking, giving 
the highest possible value of the modulus, and computer 
simulations lend support to this assumption 39. If this is 
not the case, the stoichiometry in such reactions may not 
be accurately defined and values of the extent of reaction 
somewhat questionable. 

In the present investigation, the theory of local 
constraints on junctions is used to interpret the properties 
of model PDMS networks. Results reported in the 
literature for the small-strain modulus of such networks 
will be re-examined, and account will be taken of the 
dependence of calculated values of network parameters 
on the hydrosilylation side reactions described recently 
by Macosko and Saam 11. One of the major concerns will 
be the possible role played by trapped entanglements, a 
subject of continuing interest. The molecular basis of the 
various theories of rubber elasticity will be evaluated in 
an attempt to reconcile some differences of opinion. 
Factors affecting the determination of the network 
parameters will be discussed, namely the concentration 
of elastically active chains and junctions va and /~a, 
respectively. This includes the importance of the non- 
equivalence of the 'effective' number of chains v (relevant 
to theory) and the commonly used 'active' number of 
chains Va. 

ELASTICITY EQUATIONS 

The quantity most often used to analyse elasticity results 
in uniaxial deformation is the reduced stress2-4: 

[ f*]  =fv~/a/A*(~- a -  2) (1) 

where f*  is the equilibrium retractive force, v2 the 
volume fraction of polymer in the network during the 
stress-strain measurements, A* the undeformed cross- 
sectional area of the sample, and ~t its elongation (ratio 
of length in the stretched state to the length in the 
unstretched state at the same volume). 

Experimental values of [ f*]  for moderate values 
of elongation can be represented by the simple Mooney- 
Rivlin equation4°'41: 

[f*]  = 2C1 + 2C2a- 1 (2) 

where 2C1 and 2C 2 are constants independent of 
elongation. In the limit of a molecular deformation that 
is 'aftine' (linear in the strain), the elastic equation of state 
for a perfect network is5'26: 

[f*]  a f f  = vR Typic 3 (3) 

where v is the number density of elastically effective 
network chains, R the gas constant, T the absolute 
temperature, and Vzc the volume fraction of polymer 
chains in the system being crosslinked which were 
successfully incorporated in the network structure. 
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The shear (small-strain) modulus G is then expressed 
by the relationshipS'26: 

G = lim~__,l[f*] = 2C1 + 2C2 (4) 

It is well known that values of 2C1+2C2 tend to 
overestimate G by ~ 5 %  5'26. The modulus in the 
phantom limit is related to the phenomenological 
parameter 2C1 by 22 36: 

* __ 2/3 [ f  ]ph-~RTv2c ,.~ 2C1 (5) 

where ~ is the connectivity of the network, which is related 
to the network degree of interlinking for a perfect network 
by26,33-36:  

~=(1 - 2/cp)v a (6) 

where cp is the functionality, possibly an average, of the 
network junctions. The 'active' number of junctions #a 
in a perfect network free of defects is given by26: 

Experimental stress-strain measurements indicate that 
real networks generally exhibit properties between the 
phantom and affine limits 32-36. According to the recent 
theory of network behaviour by Flory and Erman, the 
elastic force is taken to be the sum of the two 
contributions26,33-36: 

f=fph +f~ (8) 

where fph is the force predicted for a phantom network, 
and f~ is the contribution arising from local inter- 
molecular entanglements and steric constraints on 
junction fluctuations. Hence, the expression for [ f* ]  in 
the constraint theory becomes26'33-36: 

[ f* ]  = CRTv2/c3(1 +fJfph) (9) 

where 

fo/Lh = ( ~ / ~ ) [ ~ K ( , ~ )  - ~ - 2 K ( ~ 2 ) ] ( ~  - ~ -  2) - 1  ( 1 0 )  

Generally, the principal extension ratio 2t is related to 
the axial elongation a at the prevailing volume V, which 
may differ from the volume V ° in the reference state. The 
principal extensions 2 t relative to the state of reference 
area,a4: 

2 1  = o ~ ( V / V ° )  1/3 (1 1) 

2 2 = 2 3 = O~ - 1 / 2 ( V / V ° ) 1 / 3  (12) 

and 

K(22)=BEB(B+ l ) - l  +g(gB+OB)(gB+ l ) - q  (13) 

B = (2t -  1)(1 + 2, + ~2t2)/(1 + g)2 (14) 

=. ,~2[K-1 + ~ ( '~ t -  1)] (15) 

/~ = B{ [22t(2 ' -  1)] -1 + (1 - 2~2t)[22(1 + 2 t -  ¢2t2)] -1 

+20(1+0) -1 } (16) 

0 = x-1 _ ~(1 -- 32d2) (17) 

The theory predicts that fJfph decreases with increasing 
deformation, and that the modulus approaches the 
phantom limit at a ~ .  The relative contribution from 
the constraints in the limit g ~  1 for a perfect network is 
predieted by the theory to be34: 

fJfph= 2/(q~-- 2) (18) 

and should therefore vanish as the functionality increases. 

The more important of the two parameters is r, which 
serves as a measure of the severity of the entanglement 
constraints relative to those in a phantom network, where 
such constraints are absent. The other parameter in the 
constrained-junction theory is ~, which takes into account 
the possibly non-affine transformation of the domains of 
constraints with increasing deformation 26'33-a6. 

Previous results on PDMS networks indicate that x is 
related to the phantom modulus, and consequently to the 
phenomenological parameter 2 C .  by the relationship: 

x = A(2C 0-1/21)22~1 (19) 

where, for a tetrafunctional network, A = 236. It has been 
observed, however, that A is not constant and increases 
with the molecular mass M.  of the primary chains and 
the functionality cp 26. 

Following Langley 14 and Dossin and Graesley 15, the 
shear modulus at small strain (~--,1) is written as5'15: 

G = v~RT(1 - 2h/tp) + T~G ° (20) 

where h is a parameter that scales departures from affine 
deformations of chain vectors and ranges from zero (for 
affine behaviour) to unity (for phantom networks). The 
quantity T~ is a trapping factor that represents the fraction 
of chains that are permanently entangled, and G~ is the 
'entanglement modulus' (often associated with the plateau 
modulus of the corresponding uncrosslinked polymer). 
The latter has been generally taken to be a measure of 
the topological interactions or intermolecular entangling 
between chains. 

In this investigation, it is important to underscore the 
essential difference between the 'active' number of chains 
v~ and junctions #a according to the Scanlan 42 and 
Case 43 definitions (commonly used for imperfect networks), 
and the number of 'elastically effective' chains v 
and junctions /~ (relevant to rubber elasticity theory). 
Graessley ~4'4s has shown that the cycle rank of a random 
network is expressed by: 

~=Va- / t  ~ (21) 

a result later generalized by Flory 46 to networks of any 
kind, giving the universal form: 

= v -/~ (22) 

It then follows that46: 

[f*]ph = (Ya - -  #a) R TV2/c3 = (v -- I~)R TV2/c3 (23) 

In a perfect network, the small-strain (affine) modulus is 
expressed by equation (3). In a real (imperfect) network, 
howevera6: 

, _ 2/3 [ f  ] a f t - -  vRTv2c (24) 

It is worth noting that, in generaP 6 

v ~ v a (25) 

As was pointed out by Flory 46, the identification of va 
with v is proper only for perfect networks; otherwise, 
it is an approximation that is legitimate for high- 
functionality networks. Flory has shown that the effective 
number of chains for imperfect networks is expressed 
rigorously by: 

v = 2~ (26) 
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Following the same arguments, Queslel and Mark 26 have 
shown that for an imperfect trifunctional network: 

~t = # d ( 3 P -  2) (27) 

v = v~P/ (3P-  2) (28) 

where P is the extent of reaction of the crosslinking agent. 
In this process, both v and # are always larger than Va 
a n d / ~  when the reaction is incomplete. 

NUMERICAL CALCULATIONS AND 
NETWORK PARAMETERS 

For perfect model PDMS networks, the total number 
of chains Vo is calculated from2-4: 

v o = p / M  . (29) 

where p is the bulk density, and Mn the number-average 
mass of the chains. Consequently, the cycle rank ~ and 
the total number of active junctions kt a can be calculated 
from equations (6) and (7). On the other hand, if 
endlinking is incomplete or if the initial stoichiometric 
ratio r is different from unity, thenS-X9: 

q~[Af]o q~[Af]o 
r = - - -  ( 3 0 )  

2[B2]o 2Vo 

2rp 
[ - a f - l o  = ~ o  - -  (31) 

~0M. 

where [Ae]o and [B2]o are the initial concentrations of 
the ~0-functional crosslinking agent (for generating the 
junctions) and the bifunctional Bz oligomer, respectively. 

Macosko and Miller 7'47'4a have proposed branching 
theory for calculating the number of elastically active 
chains v, and junctions #~, as well as other structural 
parameters of the network from the sol fraction tns. The 
relevant formulae of the theory are discussed in greater 
detail elsewhere 7'47'48. 

The occurrence of side reactions results in loss of Si-H 
groups that would otherwise form crosslinks, and thus 
the value of r will change ~. The observed effective 
conversions in hydrosilylation cures of vinyl-terminated 
PDMS oligomers were derived in the same manner 1~. 
The observed conversions of PSiH and Pvi and the initial 
value of r are given by ~ 1: 

[ s in]o  - [SiH] 
Psin - (32) 

[SiH]o 

[-vi] o - [vi] 
Pvi - (33) 

[vi]o 

[SiH]o Pvi 
r = = (34) 

[vi]o PSiH 
and the effective conversions to form crosslinks are~: 

P S i H  - -  Pv 
P~iu -- (35) 

1 --Pv 

P'~i = P~i (36) 

P'vi 
r' = r(1 -- Pv) = - -  (37) 

P S i H  

where PSiH is the effective conversion of the Sill groups 
to crosslinks, Py the extent of loss of Sill groups through 
volatilization, P'~ the effective conversion of the vinyl- 
terminated oligomer, and r' the effective value of the 

stoichiometric imbalance ratio. It is obvious from closer 
examination of Figures 6 and 7 in reference 9 that values 
of the modulus go through a maximum at r/r' ~ 1.2. In 
the absence of significant side reactions, it would be 
expected to occur at r/r '= 1.0. 

In the present analysis, the network structural 
parameters v a and/~a, the effective functionality (tp e = 2Va/Pa ), 
the volume fraction of elastically effective chains v2 and 
the factor Te were all calculated from the corrected values 
of the sol fraction ~0s using branching theory, as outlined 
by Macosko and Miller 7'47'48. Values of ¢ and the 
corresponding phantom modulus were obtained from the 
sol fractions according to equations (22) and (23). 
Values of the effective number of junctions and chains 
# and v for trifunctional networks were obtained from 
equations (27) and (28), respectively. In order to account 
for the side reactions in the hydrosilylation cures 
mentioned above, the corrected values r' were used 
instead of r in the calculations. Values of the extent of 
reaction PsiH and the correspondingly different structural 
parameters for the networks were obtained by an 
iterative solution of equations (A5) through (A7) in 
reference 7. Calculated values of the shear modulus G 
and the phantom modulus [f*]ph were obtained from 
equations (24) and (23), respectively. 

Analyses based on branching theory have neglected 
the fact that the large numbers of network imperfections 
generated by incompleteness of end-linking would act as 
diluent, even in the dry unswollen state 49. As shown in 
equation (1), the values of both G and [f*]ph should be 
reduced by v21/3 (where v2 is the volume fraction of 
elastically effective chains in the network). Hence, values 
of G and [f*]ph predicted by equations (3) and (24) would 
be: 

[f*],ef = vRTv2/c3V~ 1/3 (38) 

[f*]vh = ~RTv2/c3V2 ,/3 (39) 

where the factor v2 ~/3 had not been accounted for in 
obtaining the reported experimental values of G and 
[f*]ph" 

Values of [ f * ] , ~ l  were calculated from the constrained- 
junction theory of Flory and Erman 33-36, using 
equations (5), (9) and (23). For each network, x was 
obtained from equation (19), and an initial value of zero 
was arbitrarily assigned to ~, as is frequently done 26. In 
subsequent calculations, however, the value of ~ was 
varied for illustrative purposes, but the effects found were 
not substantial and are therefore not presented here. 
Values of v and # for trifunctional networks were 
obtained from equations (27) and (28). For tetrafunctional 
networks, values of v, and #, were determined from 
branching theory, and were used as approximate 
substitutes for v and/z (even though it is known that they 
can be somewhat different). 

In this connection, one should be aware that it is 
difficult to obtain accurate values of the sol fraction, 
particularly in view of the small quantities that frequently 
have to be measured. Nonetheless, we shall use branching 
theory to calculate the structure parameters of the 
network in that it is the best option at hand. 

RESULTS AND DISCUSSION 

The data collected from several studies on model PDMS 
networks, and previously analysed by Gottlieb et al. 5, 
are now re-examined using the scheme described above. 
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Small-strain modufi of PDMS model networks: M. A. Sharaf and J. E. Mark 

Correction for side reactions will be carried out only for 
the data obtained from reference 9, since it is the only 
set for which values of r/r' can be determined with any 
reliability. The remaining data points had to be used 
as reported without any further correction for side 
reactions 17'22-24. The data points which were corrected 
for side reactions are all for networks having a sol fraction 
<7%. Also, it is worth noting that the values of v,,/~, 
and T= computed from branching theory are lower than 
the values which correspond to complete end-linking. 
These values are reduced, in general, by a factor of about 
2 to 3. The results reported in the literature and 
those corrected for side reactions are reported in 
Tables 1 and 2, respectively, for the trifunctional 
networks. Tables 3 and 4 present the corresponding results 
for the tetrafunctional networks. 

Use of the phantom and the constrained-junction 
theory to interpret a wealth of experimental data leads 
to identification of the phantom modulus [f*]ph at least 
approximately with the phenomenological constant 
2Clll  21. Values of [f*]ph calculated here, however, are 
two- to three-fold lower than the corresponding values 
of 2C1. This is presumably due to inherent inaccuracies, 
mentioned above, in determinations of the sol fraction. 
In any case, it is contrary to all experimental and 
theoretical assumptions where [f*]ph [expressed by 
equation (23)], should hold for any network regardless 
of its functionality or the presence of defects (such as 
dangling chains, connected to the network at only one 
end). 

For purposes of comparison, the results for trifunctional 
networks are shown in Figure 1 with the same values of 
r that were used to obtain the structural parameters of 
the network without correction for side reactions 5'9. Here, 

values of G are plotted against values of vaRT, consistent 
with equation (3). The solid line represents theory 
according to which the ordinate should equal the abscissa 
in the affine limit, where x--.oo. The dashed line shows 
values of the phantom modulus [f*]ph calculated from 
equation (23). At the lower degrees of crosslinking, 
values of G exceed those predicted by the theory. 
The data, however, do not unambiguously suggest 
any appreciable intercept that could be attributed to 
significant contributions from trapped entanglements. 
Hence, Ge ~0, and likewise the small-strain modulus G 
vanishes in the limit vaRT--*O. The interesting point here 
is that at intermediate values of v~R T, there is a transition 

0 . 4  

'E 0.3 ' ' / © © ' /  

E e o • / 
• ~ © -  

0 . 0  I I I I 

0 . 0  0.1 0 .2  0 . 3  0 . 4  0 . 5  

v.RT, N mm "2 

Figure 1 Modulus shown as a function of the affine modulus expected 
for the network active chain density v=. The solid line is for the affine 
modulus,  and the dashed line for the phan tom limit. The experimental 
data  are for trifunctional PDMS model networks, as reported by 
Mark et al. 23 (A), Meyers TM (@) and Macosko and Benjamin 9 ((3) 

Table 2 Elastomeric properties of the trifunctional PDMS networks with corrections for side reactions a 

M, voRT v=RT vRT G I-f*]ph [ f* ]=~ t  
(g m o l -  1) r' b to s Psilt 132 (p K (N m m -  2) (N m m -  2) (N m m -  2) (N m m -  2) (N m m -  2) (N m m -  2) G/vRT 

30000 1.09 0.0325 0.835 0.707 3.0 19.1 0.080 0.031 0.112 0.013 0.028 2.20 0.451 

30000 1.21 0.0358 0.777 0.696 3.0 20.6 0.080 0.027 0.097 0.011 0.025 1.50 0.433 

30000 1.29 0.0367 0.745 0.694 3.0 20.6 0.080 0.025 0.102 0.011 0.024 1.30 0.428 

22400 1.00 0.0760 0.851 0.604 3.0 21.8 0.107 0.028 0.061 0.010 0.024 1.40 0.275 

22400 1.00 0.0730 0.853 0.609 3.0 21.3 0.107 0.028 0.062 0.010 0.024 1.50 0.283 

11400 0.91 0.0790 0.899 0.602 3.0 14.6 0.211 0.058 0.065 0.022 0.047 0.90 0.266 

11400 1.00 0.0314 0.888 0.713 3.0 12.5 0.211 0.090 0.124 0.031 0.069 1.00 0.456 

11400 1.11 0.0073 0.863 0.847 3.0 10.6 0.211 0.121 0.193 0.042 0.095 1.10 0.700 

11400 1.21 0.0060 0.814 0.863 3.0 11.1 0.211 0.114 0.192 0.038 0.089 0.90 0.729 

11400 1.31 0.0040 0.775 0.890 3.0 11.1 0.211 0.111 0.221 0.038 0.088 0.80 0.780 

11400 0.99 0.0381 0.887 0.691 3.0 12.7 0.211 0.082 0.098 0.030 0.064 0.90 0.418 

11400 0.99 0.0369 0.888 0.694 3.0 12.9 0.211 0.085 0.096 0.029 0.065 0.90 0.424 

11400 1.11 0.0106 0.855 0.820 3.0 11.1 0.211 0.111 0.126 0.038 0.086 0.70 0.648 

11400 1.34 0.0055 0.759 0.872 3.0 11.7 0.211 0.103 0.182 0.035 0.081 0.60 0.746 

5430 0.99 0.1190 0.835 0.564 3.0 12.9 0.443 0.079 0.062 0.028 0.059 0.50 0.182 

4190 0.99 0.0497 0.876 0.669 3.0 8.5 0.574 0.196 0.147 0.065 0.133 0.50 0.361 

4190 1.15 0.0255 0.813 0.748 3.0 7.9 0.574 0.223 0.169 0.076 0.155 0.40 0.501 

4190 1.25 0.0418 0.757 0.698 3.0 9.1 0.574 0.170 0.125 0.057 0.120 0.30 0.407 

3280 1.01 0.0456 0.866 0.683 3.0 7.4 0.733 0.253 0.177 0.086 0.167 0.50 0.379 

3280 1.10 0.0091 0.864 0.840 3.0 5.9 0.733 0.402 0.296 0.135 0.265 0.50 0.671 

3280 1.20 0.0113 0.809 0.829 3.0 6.3 0.733 0.352 0.257 0.118 0.235 0.40 0.648 

3280 1.30 0.0252 0.751 0.762 3.0 7.3 0.733 0.262 0.178 0.088 0.178 0.20 0.516 

a The experimental results were obtained by Macosko and Benjamin 9 
b Corrected for hydrosilylation side reactions by a factor of r'/r = 1/1.2 
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toward the phantom limit of the modulus. This trend will 
be explored in greater detail below. 

If side reactions resulting in losses of Si-H groups it 
are accounted for, then values of the effective stoichiometric 
ratio r' should be lower than the initial value r. 
Figure 2 is a plot of G against vaRT for trifunctional 
networks, where the effective values of r' (r/r' ~ 1.2) have 
been used to obtain the structural parameters of 
the network. Better agreement between theory and 
experiment is now observed. The solid line represents the 
upper bound of theory (the affine modulus), as in 
equation (3). The results suggest a linear relationship of 
unit slope, within the limits of experimental error. 
Correspondence of experimental values of G with the 
calculated values of vaRT is particularly close at low 
values of v~RT. Any entanglements latent in the polymer 
prior to crosslinking do not seem to contribute much to 
the modulus after crosslinking. The enhancement of [ f* ]  
at ct--,1 has been observed to vanish upon swelling, 
suggesting it is due to difficulties in reaching elastic 
equilibrium when the network chains are very long. Thus, 
the behaviour observed appears to be within the 
limits of the constrained-junction theory of Flory and 
Erman 33-36. 

It is important to emphasize the non-equivalence of v 
and v~. Values of the effective number of strands v 
(relevant to the theory of elasticity) have been calculated 
using branching theory and equation (28). In Figure 3, 
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E 0.3 o /~ ° o E 
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Figure 2 The comparisons made in Figure 1, but with correction for 
side reactions in the hydrosilylation cure as outlined in the text. The 
experimental data are those reported by Macosko and Benjamin 9 
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Figure 3 The comparisons made in Figure 2, but shown as a function 
of the effective chain density v, calculated according to equation (28) 
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Table 4 Elastomeric properties of the tetrafunctional PDMS networks with corrections for side reactions ° 

M, voRT vaRT G [f*]ph [f*]=~t 
(g tool- 1) r' b ~O, P~i, v2 (p= x (N m m -  z) (N m m -  2) (N m m -  z) (N m m -  2) (N m m -  2) G/vR T T~ 

30000 1.11 0.0441 0.760 0.670 3.3 16.3 0.080 0.039 0.131 0.015 0.032 3.37 0.389 

30000 1.20 0.0242 0.742 0.739 3.3 14.9 0.080 0.046 0.146 0.018 0.037 3.20 0.508 

30000 1.32 0.0213 0.694 0.753 3.3 15.3 0.080 0.044 0.144 0.017 0.036 3.28 0.532 

22400 1.03 0.0401 0 . 8 1 1  0.682 3.3 13.2 0.107 0.058 0.114 0.023 0.045 1.97 0.408 

22400 1.11 0.0161 0.807 0.780 3.4 11.6 0.107 0.073 0.176 0.030 0.058 2.42 0.580 

22400 1.21 0.0173 0.750 0.773 3.3 12.3 0.107 0.067 0.160 0.027 0.053 2.39 0.569 

22400 1.30 0.0162 0.710 0.780 3.3 12.6 0.107 0.064 0.151 0.025 0.051 2.35 0.581 

11400 1.00 0.0157 0.884 0.783 3.5 7.9 0.211 0.153 0.205 0.064 0.112 1.34 0.583 

11400 1.10 0.0025 0.868 0.906 3.5 7.1 0.211 0.182 0.291 0.079 0.137 1.60 0.814 

11400 1.13 0.0032 0.842 0.895 3.5 7.3 0.211 0.175 0.262 0.075 0.132 1.50 0.791 

11400 1.13 0.0860 0.712 0.591 3.2 12.4 0.211 0.069 0.093 0.026 0.051 1.35 0.249 

11400 1.17 0.0040 0.812 0.883 3.4 7.5 0.211 0.169 0.295 0.071 0.127 1.74 0.770 

11400 1.18 0.0014 0.823 0.929 3.5 7.2 0.211 0.180 0.303 0.077 0.136 1.68 0.859 

11400 1.19 0.0070 0.787 0.849 3.4 7.9 0.211 0.155 0.221 0.064 0.116 1.43 0.705 

11400 1.20 0.0029 0.800 0.900 3.4 7.5 0.211 0.171 0.268 0.072 0.129 1.57 0.801 

11400 1.30 0.0016 0.755 0.926 3.4 7.6 0.211 0.167 0.276 0.068 0.126 1.66 0.853 

11400 1.33 0.0078 0.716 0.843 3.3 8.5 0.211 0.140 0.228 0.056 0.105 1.63 0.693 

4190 1.00 0.0083 0.912 0.838 3.5 4.5 0.574 0.460 0.343 0.200 0.304 0.75 0.678 

4190 1.10 0.0052 0 . 8 5 1  0.870 3.5 4.5 0.574 0.458 0.360 0.195 0.305 0.79 0.738 

4190 1.20 0.0041 0.794 0.886 3.4 4.7 0.574 0.443 0.461 0.184 0.296 1.04 0.768 

4190 1.31 0.0037 0.739 0.895 3.4 4.8 0.574 0.421 0.426 0.170 0.282 1.01 0.785 

= The experimental results were obtained by Macosko and Benjamin 9 
b Corrected for hydrosilylation side reactions by a factor of r'/r = 1/1.2 

dependence of G on the presumably more-nearly correct 
value vRT is demonstrated. Near-perfect agreement 
between theory and experiment is observed at lower 
values of vRT, within limits set by the scattering of the 
data. The results so presented are well interpreted using 
the constrained-junction theory and underscore the 
importance of distinguishing between va and v. 

Another property that is of interest is the ratio G/vRT 
of the small-strain modulus to the theoretical value of 
the affine modulus, in equation (24). It is clear that its 
maximum expected value is unity. The dependence of 
these values on vR Tis shown in Figure 4. The three points 
that show the largest increase above unity are those 
for networks having M, = 30 000 g mol- 1. Such values 
could be due mainly to difficulties in reaching elastic 
equilibrium when the network chains are very long, or 
to higher slopes in the Mooney-Rivlin extrapolations 26. 
This suggestion is supported by the fact that the values 
of G are higher than those for networks having 
Mn=22400gmol-1, which is the reverse of what is 
expected. The fact that almost all values of G/vRT 
are equal or less than unity suggests that trapped 
entanglements in these networks do not play a major 
role at elastic equilibrium. 

The results presented in Figures 1-3 show an 
unmistakable departure in the values of G from the upper 
affine bound as vRTincreases. Again, actual values of G 
predicted by the constrained-junction theory should fall 
below the upper bound even at small strain. Such 
decreases in values of G with increase in crosslink 
density are expected because of the decrease in chain 
interpenetration as the network chain length decreases. 
In previous comparisons of experiment with theory, 
neglect of this factor could have led to incorrect inferences. 
It is probably inappropriate to make the contributions 
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Figure 4 Values of the ratio G/vRTof the experimental modulus to 
the calculated affine modulus for the trifunctional PDMS networks. 
The dashed line is for the affine modulus, and the experimental data 9 
are for trifunctional PDMS model networks 

from constraints on the fluctuations a constant fraction 
of the reduced stress regardless of the degree of 
crosslinking. In fact, the constrained-junction theory 
allows for a decrease in the degree of interpenetration as 
the network chain length decreases 33-36. In the above 
analysis, a substantial intercept of magnitude comparable 
to those obtained in previous studies would be obtained 
only upon extrapolation through the data in the region 
where the affine to phantom transition ensues. This would 
not be consistent with the curves consisting of two 
discernible segments. 

Also of interest are suggestions that topological 
entanglements contribute to the small-strain modulus at 
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small crosslink densities, and that direct proportionality 
to chemical crosslink density is found only at high degrees 
of crosslinking 2°. Such conclusions could be due to 
neglect of the fact that at the high temperatures employed 
for hydrosilylation, network imperfections are probably 
enhanced, as already mentioned. Any increase in modulus 
from such entanglements would be expected to be largest 
at the lower degrees of crosslinking, however, and this 
was not the case 2°. 

Intuitively, and according to equations (9) and (10), the 
modulus [f*]c due to constraints should increase with 
increase in the number of junctions /~ (i.e. with 
the degree of crosslinking). However, further increase 
in the degree of crosslinking would lead to lower 
values of the degree of interpenetration between chains 
and junctions. Eventually, this will decrease [f*]c 
through decrease in x, as predicted by equation (19). 
Results discussed below seem to be consistent with this 
expectation. Thus, the transition proposed as being from 
the plateau modulus of PDMS to the range of direct 
proportionality could alternatively be interpreted as a 
transition between the affine and phantom limits of 
deformation with increase in the degree of crosslinking. 

The results of calculations of the modulus and related 
quantities from the constrained-junction theory 34-36 are 
illustrated in Figure 5. The small-deformation modulus 
[f*]~--,1, calculated from equation (9), is shown as a 
function of the affine modulus expected for the effective 
network chain density v. The dotted-and-dashed line 
represents the upper bound (the affine limit), and the 
dashed line the phantom modulus [as obtained from 
equation (5)]. The dotted line represents the contribution 
to the modulus from constraints on the junction 
fluctuations, calculated according to equations given 
elsewhere 3~36. As expected, values of [-f*]~--,1 are lower 
than the theoretical affine modulus. It is apparent that 
the theory accounts, at least qualitatively, for these 
experimental observations. 

It can be argued that if trapped entanglements are 
operative, they should contribute to the modulus 
at all deformations, i.e. to both the phantom modulus 
[f*]ph and the shear modulus G. Therefore, Figure 6 
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Figure 6 The Mooney-Rivlin estimate of the high-deformation 
modulus shown as a function of the phantom modulus as augmented 
by a term for contributions from trapped entanglements. The solid line 
represents equivalence of the two types of modulus. The elastomers are 
model trifunctional networks of PDMS as reported by Mark et  al. 23 
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Figure 7 The comparisons made in Figure  1, but for tetrafunctional 
PDMS networks as reported by Mark and Sullivan 22 (/x), Llorente 
and Mark 24 (1-1), Llorente and Mark :5 (O), Meyers et  al. 17 

(O) Granick et al. a (0)  and Macosko and Benjamin 9 (©) 
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Theoretical values of the small-deformation moduli ( ~ 1 )  
as obtained from the constrained-junction model and related quantities, 
shown as a function of the affine modulus expected for the effective 
network chain density v. The solid line represents the modulus at ~--* 1, 
the dotted-and-dashed line is for the affine modulus, and the dashed 
line is for the phantom limit. The dotted curve represents the 
contribution from the constraints on the junctions 

was prepared to show values of 2C1 as a function 
of [-f*-]ph+GeT ¢ for the results 23 reported on the 
trifunctional PDMS networks. The solid line represents 
the assumption that entanglements contribute to the 
large-strain modulus and is seen to give a poor fit of the 
experimental results. 

Comparisons for tetrafunctional networks are given in 
Figure 7, which shows the change of G with values of 
vaRTcalculated from sol fractions. Again, there does not 
seem to be an appreciable intercept that could be 
attributed to significant contributions from trapped 
entanglements. There does seem, however, to be a 
transition towards the phantom limit at intermediate 
values of vaRT. Fioure 8 demonstrates that there is better 
agreement between theory and experiment when side 
reactions of the Si-H group are taken into account by 
using the corrected value r' to obtain the network 
parameters. (As mentioned earlier, values of v~ were used 
as approximate substitutes for v.) The departure observed 
at low values of VaRT could be due primarily to 
inaccuracies in defining the initial stoichiometry. This 
possible source of error was discussed in a similar 
investigation 38 that used the same starting materials as 
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the earlier s tudy 9. The tetrafunct ional  crosslinking agent  
was found to have an average functionali ty of  3.5 
and a puri ty  of  ~ 9 0 %  3s. The  resulting uncertainty in 
the ne twork  structural  pa ramete rs  illustrates a major  
p rob lem in the s tudy of rubber  elasticity, par t icular ly in 
regard to testing the var ious theories. An addit ional  
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Figure 8 The comparisons made in Figure 2, but for tetrafunctional 
PDMS networks as reported by Macosko and Benjamin 9 
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Figure 9 Modulus shown as a function of the Mooney-Rivlin estimate 
of the high-deformation modulus. The solid line is for the attune limit 
for an imperfect network as approximated by 2(2C1), calculated 
according to equation (40). The dashed line is for the phantom modulus 
approximated by 2C1 itself. The experimental points are for trifunctional 
networks as reported by Mark et al. 23 
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Figure 10 The comparisons made in Figure 9, but for tetrafunctional 
networks as reported by Llorente and Mark 24 (I-q), Llorente and 
Mark 2s (<>) and Meyers et al) 7 (0)  

problem could be difficulties arising from inhomogeneities 
in the crosslinking process, as has been pointed  out  
elsewhereS°. 

One  way to avoid some of the cited difficulties in 
obta ining accurate  values of  the ne twork  structural  
pa ramete rs  is to plot  G ~ 2C1 + 2C2 against  2C1 ~ I-f*]ph. 
According to the F l o r y - E r m a n  theory  33-36, [ f* ]ph  is 
p ropor t iona l  to the effective interconnectivi ty of  the 
network,  and can therefore be used to define an 
effective n u m b e r  of  chains v and  junct ions  #, regardless 
of junct ion  functionali ty and incompleteness of  the 
fo rmat ion  reaction. The  da ta  obta ined  f rom the l i terature 
are plot ted in Figures  9 and 10 for trifunctiona123 and 
tetrafunctiona117'22'24 networks,  respectively. In each of 
these two figures, the dashed line represents the lower 
bound  of the theory (the p h a n t o m  limit), and the 
solid line approx imates  the upper  bound  (the affinely 
deforming network).  The latter was calculated f rom 
equat ion  (26) ̀*6 which, for an imperfect network,  gives: 

[ 'f*]aff = vR T =  2~R T =  2(2C1) (40) 

The  results are well represented within the two limits of 
deformation.  Again, as the degree of crosslinking is 
increased, a t ransi t ion toward  the lower bound  (the 
p h a n t o m  limit) is observed. This is expected, since the 
constraints  on the f luctuations of  the junct ions  vanish 
with an increase in either the degree of crosslinking or 
the deformation.  The  results thus appea r  to be in accord 
with the main  premises of  the constra ined-junct ion 
theory 46. Addit ional  improvements  in the agreement  
between theory and exper iment  might  be obta ined  by 
employing the recently proposed,  and  more  realistic, 
const ra ined-chain  theory 5x. 
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