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Small-strain moduli reported in the literature for polydimethylsiloxane (PDMS) model networks have been
critically re-examined, with account being taken of recent studies which have demonstrated the occurrence
of significant side reactions in hydrosilylations. When the effects of such side reactions on network structure
parameters are properly taken into account, the elasticity results can be well explained using the recent
molecular theory of Flory and Erman. The revised calculations show a transition in the modulus from the
affine to the phantom limit of deformation as the degree of chemical crosslinking increases. This is to be
expected when the constraints on the fluctuation of junctions vanish (because of the decreased interspersion
of chains), and such constraints are expected to vanish even in the small-strain region when the chains are
sufficiently short. In lieu of carefully controlled reactions with well-defined stoichiometries, it appears that
the procedure best suited for testing the various theories of rubber-like elasticity is a plot of the modulus
G (as approximated by the sum 2C, +2C, of the Mooney—Rivlin constants) against the phantom modulus
[f*]1.n (as approximated by 2C,). Also of importance is the difference between the ‘effective’ number of

network chains v (relevant to theory) and the commonly used ‘active’ number of chains v,.
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INTRODUCTION

In recent years, a considerable number of studies have been
carried out on model networks of polydimethylsiloxane
(PDMS). A central goal of these studies is to test
the applicability of the various theories of rubber-
like elasticity. By employing end-linking reactions,
the number of strands between junctions and the
functionalities of the junctions can be controlled.
These techniques usually involve the reaction between
bifunctionally terminated polymer chains and multi-
functional end-linking agents having a functionality ¢ > 3.

The traditional theories of rubber-like elasticity have
been developed on the basis of network chains being
simple Gaussian random coils. Models of elastomers in
the ‘phantom’ network limit (in which the chains are
assumed to be devoid of material properties) were first
developed by James and Guth?®. The term phantom was
used to emphasize that the configurations available to
each network chain depend only on the position of
its ends and to be otherwise independent of the
configurations of neighbouring chains with which they
share the same region of space. In such a phantom
network, it is assumed that crosslinking does not
influence the distribution of end-to-end distances in the
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undeformed state, that the chains move freely through
one another, and that the only contribution to the
elasticity of the network is from the network connectivity.
James and Guth! assumed also that the network is
connected to a set of fixed surface junctions that preserve
its volume. Junctions inside the elastomer are free to
fluctuate around their well-defined, mean (time-averaged)
positions. Fluctuations of the junctions are strain
independent, whereas all the time-averaged vectors
transform affinely with applied macroscopic strain. The
theory has been successful in many respects, but some
aspects of stress—strain behaviour differ significantly from
its predictions.

In an affine network®™, on the other hand, the
end-to-end chain vectors are assumed to transform
affinely (linearly) with macroscopic deformation. Fluctu-
ations of the junctions are completely suppressed by local
intermolecular entangling with neighbouring chains
sharing the same region of space.

The role of trapped entanglements on the mechanical
properties at equilibrium has been the subject of
conflicting opinions3~3%. Macosko and co-workers>!2,
Ferry!3, Langley'#, Graessley and co-workers!®:!6,
Merrill and co-workers!’'°, Opperman and Rennar??,
and Edwards?! have argued that in the limit of small
strains, trapped entanglements contribute to the modulus.
This is thought to be due to the large amount of overlap
existing in the domains pervaded by neighbouring strands
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wherein chains cannot pass through the contours of other
chains'371%. Hence, it follows that the configurations of
neighbouring chains may well depend on one another,
producing additional contributions to the partition
function!3~', In other words, discrete entanglements
consisting of well-defined loops of one chain about
another are thought to act as crosslinks between the
chains thus entwined. If the chains are crosslinked, it can
be argued that a portion of the interaction that
contributed to the plateau modulus will not relax out
and, thus, will increase the network modulus!?™'6.
Interpretation of a comprehensive array of data confined
to the region of small strain, has led many investigators
to argue, compellingly, that in this region discrete
(trapped) entanglements are present along the chain
contours and contribute directly to the modulus®>~2*.
The phantom and affine limits of deformation are two
extreme cases, and experimental stress—strain measurements
suggest that real networks exhibit properties between
these two limits'43273¢. The suggestion of a gradual
transition between affine and phantom limits with
increasing deformation, in terms of decreasing inter-
molecular entanglements among the chains, was first
suggested by Ronca and Allegra®2. More recently, a
comprehensive molecular theory for real networks based
on this idea was formulated by Flory and Erman33-36,
One of the major premises of the theory is that local
intermolecular entanglements and steric constraints on
the fluctuations of junctions contribute to the modulus
at intermediate deformations. It was emphasized that the
constraints on junctions are due to ‘diffuse’ elastic
entanglements of chains with their neighbours, and are
diminished by swelling®*3¢. In further elaboration,
the chains pendent at a given junction must adopt
configurations that are free of spatial overlaps with
neighbouring chains and associated junctions with
which they share the same region of space. Extensive
interpenetration of different portions of the network that
are topologically remote implies chains and junctions are
inextricably involved333%, Accordingly, fluctuations of
the junctions about their mean positions are restricted
on this account. The constraints postulated here depend
on the number of eligible configurations available to the
system. Therefore, they are operative at equilibrium as
opposed to the discrete entanglements often proposed to

interpret the time-dependent behaviour of polymers33-36,

At least some experimental results suggest there is no
significant augmentation to the large-strain modulus
from trapped entanglements??-3!, and that these moduli
can generally be well interpreted simply from the
Flory-Erman theory®3-36, After some of these experiments
had been carried out, however, a better understanding
was obtained of the hydrosilylation cure often used
in the preparation of model PDMS networks. In
particular, Macosko and Saam'' used vinyl-terminated
polyisobutylene to explore this issue, even though the
reactions were previously considered to be straightforward
and almost free of side reactions. They observed, instead,
two major side reactions. The first consumes Si-H groups
to give redistributed siloxane groups in the resulting
polymer, as well as gaseous silanes and siloxanes as
by-products. The other side reaction, on the other hand,
results in a loss of reactivity of some vinyl groups owing
to their shift to an internal position within the chain.
These side reactions were reported to be important when
experiments were conducted at high temperatures!*-37,

The maximum value of the modulus of networks prepared
in this way was found to occur at a value of the
stoichiometric ratio r~1.2 (where r is the initial
molar ratio of Si-H groups to vinyl groups)>®*%. The
effects of this stoichiometric imbalance were properly
accounted for when the side reactions were taken into
consideration®?,

In a number of previous studies, the maximum value
of the modulus for trifunctional and tetrafunctional
PDMS networks were obtained at values of r of
~ 1.1-1.3%%38 In the absence of significant side reactions,
it is expected that balanced stoichiometry (r = 1.0) should
lead to a network having complete end linking, giving
the highest possible value of the modulus, and computer
simulations lend support to this assumption®. If this is
not the case, the stoichiometry in such reactions may not
be accurately defined and values of the extent of reaction
somewhat questionable.

In the present investigation, the theory of local
constraints on junctions is used to interpret the properties
of model PDMS networks. Results reported in the
literature for the small-strain modulus of such networks
will be re-examined, and account will be taken of the
dependence of calculated values of network parameters
on the hydrosilylation side reactions described recently
by Macosko and Saam'!. One of the major concerns will
be the possible role played by trapped entanglements, a
subject of continuing interest. The molecular basis of the
various theories of rubber elasticity will be evaluated in
an attempt to reconcile some differences of opinion.
Factors affecting the determination of the network
parameters will be discussed, namely the concentration
of elastically active chains and junctions v, and g,
respectively. This includes the importance of the non-
equivalence of the ‘effective’ number of chains v (relevant
to theory) and the commonly used ‘active’ number of
chains v,.

ELASTICITY EQUATIONS

The quantity most often used to analyse elasticity results
in uniaxial deformation is the reduced stress®>*:

Lf*]=foi/AXa—a"?) (1)

where f* is the equilibrium retractive force, v, the
volume fraction of polymer in the network during the
stress—strain measurements, A* the undeformed cross-
sectional area of the sample, and « its elongation (ratio
of length in the stretched state to the length in the
unstretched state at the same volume).

Experimental values of [f*] for moderate values
of elongation can be represented by the simple Mooney—
Rivlin equation*®4:

[f*1=2C,+2Ca7" @

where 2C, and 2C, are constants independent of
elongation. In the limit of a molecular deformation that
is ‘affine’ (linear in the strain), the elastic equation of state
for a perfect network is>-26;

[/*Jac=VR Tv%/g (3)

where v is the number density of elastically effective
network chains, R the gas constant, T the absolute
temperature, and v,c the volume fraction of polymer
chains in the system being crosslinked which were
successfully incorporated in the network structure.
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The shear (small-strain) modulus G is then expressed
by the relationship®2¢:

G=lima_,1[f*] =2C1 +2C2 (4)

It is well known that values of 2C,+2C, tend to
overestimate G by ~5%>2°. The modulus in the
phantom limit is related to the phenomenological
parameter 2C, by??73¢:

[f*]n=¢RT3E ~2C, 5

where ¢ is the connectivity of the network, which is related

to the network degree of interlinking for a perfect network
by 26,33-3 6:

E=(1-2/op, 6

where ¢ is the functionality, possibly an average, of the
network junctions. The ‘active’ number of junctions u,
in a perfect network free of defects is given by?®:

2 2
== Pa=|——= 7
# (w)v <¢—2>é %

Experimental stress-strain measurements indicate that
real networks generally exhibit properties between the
phantom and affine limits*2~3®. According to the recent
theory of network behaviour by Flory and Erman, the
elastic force is taken to be the sum of the two
contributions26-33-36;

J=ftfe @)

where f,, is the force predicted for a phantom network,
and f, is the contribution arising from local inter-
molecular entanglements and steric constraints on
junction fluctuations. Hence, the expression for [ f*] in
the constraint theory becomes?®-33-3¢;

[f*]1=E(RT3E(L+1o/fon) ©
where
fulfon=W/OaK@AD)—a 2K(@A))a—a"%)"1  (10)

Generally, the principal extension ratio 4, is related to
the axial elongation « at the prevailing volume ¥, which
may differ from the volume V' in the reference state. The
principal extensions 4, relative to the state of reference

are*34:
Ay =a(V/VO? (11)
Ay=Ay=a" VXV VO (12)
and
K(3*)=B[B(B+1)"'+g(gB+¢B)gB+1)"'] (13)
B=(— 1)1+ A4+ +g) (14)
g=Alx +{(A—1)] (1)
B=B{[2A(A— 1] +(1 —20A)[ 241 + A4, —{ADT !
+24(1+9)~"} (16)
g=xk"1—{(1-34/2) a7n

The theory predicts that f/f,, decreases with increasing
deformation, and that the modulus approaches the
phantom limit at a— oo. The relative contribution from
the constraints in the limit x—1 for a perfect network is
predicted by the theory to be*:

flfn=2/l0=2) (18)

and should therefore vanish as the functionality increases.
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The more important of the two parameters is x, which
serves as a measure of the severity of the entanglement
constraints relative to those in a phantom network, where
such constraints are absent. The other parameter in the
constrained-junction theory is ¢, which takes into account
the possibly non-affine transformation of the domains of
constraints with increasing deformation?6-33-36,

Previous results on PDMS networks indicate that x is
related to the phantom modulus, and consequently to the
phenomenological parameter 2C,, by the relationship:

Kk=A(2C,) "3 (19)

where, for a tetrafunctional network, A =235, It has been
observed, however, that 4 is not constant and increases
with the molecular mass M, of the primary chains and
the functionality ¢2°.

Following Langley'* and Dossin and Graesley', the
shear modulus at small strain (x—1) is written as>!>:

G=v,RT(1—2h/@)+ T.G: (20)

where h is a parameter that scales departures from affine
deformations of chain vectors and ranges from zero (for
affine behaviour) to unity (for phantom networks). The
quantity T, is a trapping factor that represents the fraction
of chains that are permanently entangled, and G is the
‘entanglement modulus’ (often associated with the plateau
modulus of the corresponding uncrosslinked polymer).
The latter has been generally taken to be a measure of
the topological interactions or intermolecular entangling
between chains.

In this investigation, it is important to underscore the
essential difference between the ‘active’ number of chains
v, and junctions y, according to the Scanlan*? and
Case*? definitions (commonly used for imperfect networks),
and the number of ‘clastically effective’ chains v
and junctions u (relevant to rubber elasticity theory).
Graessley*#*> has shown that the cycle rank of a random
network is expressed by:

6=va_“a (21)

a result later generalized by Flory*® to networks of any
kind, giving the universal form:

¢=v—u (22)
It then follows that*®:

[f*Jen=0a—p)RTIE =(v— RIS (23)

In a perfect network, the small-strain (affine) modulus is
expressed by equation (3). In a real (imperfect) network,
however?®:

[f*1ase=vRTHZ (24)

It is worth noting that, in general*®
v#EV, (25)

As was pointed out by Flory*, the identification of v,
with v is proper only for perfect networks; otherwise,
it is an approximation that is legitimate for high-
functionality networks. Flory has shown that the effective
number of chains for imperfect networks is expressed
rigorously by:

y=2¢ (26)
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Following the same arguments, Queslel and Mark?® have
shown that for an imperfect trifunctional network:

1=p,/(3P—-2) 27)
v=y,P/(3P-2) (28)
where P is the extent of reaction of the crosslinking agent.

In this process, both v and u are always larger than v,
and u, when the reaction is incomplete.

NUMERICAL CALCULATIONS AND
NETWORK PARAMETERS

For perfect model PDMS networks, the total number
of chains v, is calculated from?™*:

v0=p/Mn (29)

where p is the bulk density, and M, the number-average
mass of the chains. Consequently, the cycle rank £ and
the total number of active junctions y, can be calculated
from equations (6) and (7). On the other hand, if
endlinking is incomplete or if the initial stoichiometric

ratio r is different from unity, then!%:
r=(P[Af]o=(P[Af]o (30)
2[B,]o 2vg
2rp
Al =y, = 31
[Aedo=to oM. (31)

where [A4¢], and [B,], are the initial concentrations of
the ¢-functional crosslinking agent (for generating the
junctions) and the bifunctional B, oligomer, respectively.

Macosko and Miller”*7*® have proposed branching
theory for calculating the number of elastically active
chains v, and junctions y,, as well as other structural
parameters of the network from the sol fraction w,. The
relevant formulae of the theory are discussed in greater
detail elsewhere”*748,

The occurrence of side reactions results in loss of Si-H
groups that would otherwise form crosslinks, and thus
the value of r will change!'!. The observed effective
conversions in hydrosilylation cures of vinyl-terminated
PDMS oligomers were derived in the same manner!!.
The observed conversions of Pg;; and P,; and the initial
value of r are given by'":

_[SiH],—[SiH]

; 32
SiH [SiH], (32)
p,=to— il (33)
[vil,
SiH P..
=Dl Py (34)
[vilo Pgu
and the effective conversions to form crosslinks are!!:
PSiH-—PY
Pyy=——— 35
Sin=— P, (35)
P ;i =P, (36)
P
r'=r(l—Py)=—" 37
SiH

where Pgy is the effective conversion of the SiH groups
to crosslinks, Py the extent of loss of SiH groups through
volatilization, P,; the effective conversion of the vinyl-
terminated oligomer, and r' the effective value of the

stoichiometric imbalance ratio. It is obvious from closer
examination of Figures 6 and 7 in reference 9 that values
of the modulus go through a maximum at r/r'~1.2. In
the absence of significant side reactions, it would be
expected to occur at r/r'=1.0.

In the present analysis, the network structural
parameters v, and p,, the effective functionality (¢, = 2v,/u,),
the volume fraction of elastically effective chains v, and
the factor T, were all caiculated from the corrected values
of the sol fraction w, using branching theory, as outlined
by Macosko and Miller”*7#8. Values of ¢ and the
corresponding phantom modulus were obtained from the
sol fractions according to equations (22) and (23).
Values of the effective number of junctions and chains
1 and v for trifunctional networks were obtained from
equations (27) and (28), respectively. In order to account
for the side reactions in the hydrosilylation cures
mentioned above, the corrected values r were used
instead of r in the calculations. Values of the extent of
reaction Pg;y; and the correspondingly different structural
parameters for the networks were obtained by an
iterative solution of equations (AS) through (A7) in
reference 7. Calculated values of the shear modulus G
and the phantom modulus [ f*],, were obtained from
equations (24) and (23), respectively.

Analyses based on branching theory have neglected
the fact that the large numbers of network imperfections
generated by incompleteness of end-linking would act as
diluent, even in the dry unswollen state*®. As shown in
equation (1), the values of both G and [ f*],, should be
reduced by v, '/® (where v, is the volume fraction of
elastically effective chains in the network). Hence, values
of G and [ /*],, predicted by equations (3) and (24) would
be:

[f*1ase =vRTo3¢v; 17 (38)
[f*Ipn=¢RTv3cv; 1P (39)

where the factor v; !/ had not been accounted for in
obtaining the reported experimental values of G and
[f *]ph'

Values of [ /*],_,; were calculated from the constrained-
junction theory of Flory and Erman3335, using
equations (5), (9) and (23). For each network, k was
obtained from equation (19), and an initial value of zero
was arbitrarily assigned to {, as is frequently done?®. In
subsequent calculations, however, the value of { was
varied for illustrative purposes, but the effects found were
not substantial and are therefore not presented here.
Values of v and u for trifunctional networks were
obtained from equations (27) and (28). For tetrafunctional
networks, values of v, and p, were determined from
branching theory, and were used as approximate
substitutes for v and u (even though it is known that they
can be somewhat different).

In this connection, one should be aware that it is
difficult to obtain accurate values of the sol fraction,
particularly in view of the small quantities that frequently
have to be measured. Nonetheless, we shall use branching
theory to calculate the structure parameters of the
network in that it is the best option at hand.

RESULTS AND DISCUSSION

The data collected from several studies on model PDMS
networks, and previously analysed by Gottlieb et al.’,
are now re-examined using the scheme described above.
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Correction for side reactions will be carried out only for
the data obtained from reference 9, since it is the only
set for which values of r/r’ can be determined with any
reliability. The remaining data points had to be used
as reported without any further correction for side
reactions' 722724, The data points which were corrected
for side reactions are all for networks having a sol fraction
<7%. Also, it is worth noting that the values of v,, u,
and T, computed from branching theory are lower than
the values which correspond to complete end-linking.
These values are reduced, in general, by a factor of about
2 to 3. The results reported in the literature and
those corrected for side reactions are reported in
Tables 1 and 2, respectively, for the trifunctional
networks. Tables 3 and 4 present the corresponding results
for the tetrafunctional networks.

Use of the phantom and the constrained-junction
theory to interpret a wealth of experimental data leads
to identification of the phantom modulus [ f*],, at least
approximately with the phenomenological constant
2C, 2! Values of [ f*],, calculated here, however, are
two- to three-fold lower than the corresponding values
of 2C,. This is presumably due to inherent inaccuracies,
mentioned above, in determinations of the sol fraction.
In any case, it is contrary to all experimental and
theoretical assumptions where [f*],, [expressed by
equation (23)], should hold for any network regardless
of its functionality or the presence of defects (such as
dangling chains, connected to the network at only one
end).

For purposes of comparison, the results for trifunctional
networks are shown in Figure 1 with the same values of
r that were used to obtain the structural parameters of
the network without correction for side reactions>®. Here,

values of G are plotted against values of v,RT, consistent
with equation (3). The solid line represents theory
according to which the ordinate should equal the abscissa
in the affine limit, where x— c0. The dashed line shows
values of the phantom modulus [ f*],, calculated from
equation (23). At the lower degrees of crosslinking,
values of G exceed those predicted by the theory.
The data, however, do not unambiguously suggest
any appreciable intercept that could be attributed to
significant contributions from trapped entanglements.
Hence, G, ~0, and likewise the small-strain modulus G
vanishes in the limit v,RT—0. The interesting point here
is that at intermediate values of v,R7T, there is a transition

0.4 T T 1

0.3 - O -
.E o
E o2 } o> 0 a -
0] s 00 0°

0.1 -@A —

®f°
0-0 [ 1 [ L
0.0 0.1 0.2 0.3 0.4 0.5

v.RT, N mm?

Figure 1 Modulus shown as a function of the affine modulus expected
for the network active chain density v,. The solid line is for the affine
modulus, and the dashed line for the phantom limit. The experimental
data are for trifunctional PDMS model networks, as reported by
Mark et al.23 (A), Meyers'® (@) and Macosko and Benjamin® (Q)

Table 2 Elastomeric properties of the trifunctional PDMS networks with corrections for side reactions”

M, voRT v.RT VRT G [f*]on 1] gl P
(gmol™') r* w, Pin v, ¢ K (Nmm~2) (Nmm~2) (Nmm~2) (Nmm %) (Nmm 2 Nmm-2) GHRT
30000 1.09 00325 0.835 0.707 30 191  0.080 0.031 0.112 0.013 0.028 2.20 0.451
30000 121 00358 0.777 0.696 30 206 0.080 0.027 0.097 0.011 0.025 1.50 0.433
30000 129 0.0367 0.745 0.694 30 206 0.080 0.025 0.102 0.011 0.024 1.30 0.428
22400 1.00 0.0760 0.851 0.604 30 218 0.107 0.028 0.061 0.010 0.024 1.40 0.275
22400 1.00 0.0730 0.853 0.609 30 213 0107 0.028 0.062 0.010 0.024 1.50 0.283
11400 091 0.0790 0.899 0.602 30 146 0211 0.058 0.065 0.022 0.047 0.90 0.266
11400 1.00 0.0314 0.888 0.713 30 125 0211 0.090 0.124 0.031 0.069 1.00 0.456
11400 1.1 0.0073 0.863 0.847 30 106 0.211 0.121 0.193 0.042 0.095 1.10 0.700
11400 1.21  0.0060 0.814 0.863 30 111 0211 0.114 0.192 0.038 0.089 0.90 0.729
11400 1.31 00040 0.775 0.890 30 111 0211 0.111 0221 0.038 0.088 0.80 0.780
11400 099 00381 0.887 0.691 30 127 0211 0.082 0.098 0.030 0.064 0.90 0418
11400 099 0.0369 0.888 0.694 30 129 0211 0.085 0.096 0.029 0.065 0.90 0424
11400 1.11  0.0106 0.855 0.820 30 111 0211 0.111 0.126 0.038 0.086 0.70 0.648
11400 134 0.0055 0.759 0.872 30 117 0211 0.103 0.182 0.035 0.081 0.60 0.746
5430 099 0.1190 0835 0.564 30 129 0443 0.079 0.062 0.028 0.059 0.50 0.182
4190 099 0.0497 0.876 0.669 3.0 85 0574 0.196 0.147 0.065 0.133 0.50 0.361
4190 1.15  0.0255 0813 0.748 30 79 0574 0.223 0.169 0.076 0.155 0.40 0.501
4190 125 0.0418 0.757 0.698 30 91 0574 0.170 0.125 0.057 0.120 0.30 0.407
3280 101 0.0456 0.866 0.683 3.0 74 0.733 0.253 0.177 0.086 0.167 0.50 0.379
3280 1.10  0.0091 0.864 0.840 30 59 0.733 0.402 0.296 0.135 0.265 0.50 0.671
3280 1.20 0.0113 0.809 0.829 30 63 0733 0.352 0.257 0.118 0.235 0.40 0.648
3280 130 00252 0.751 0.762 3.0 73 0733 0.262 0.178 0.088 0.178 0.20 0.516

“The experimental results were obtained by Macosko and Benjamin®
Corrected for hydrosilylation side reactions by a factor of r'/r=1/1.2
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toward the phantom limit of the modulus. This trend will
be explored in greater detail below.

If side reactions resulting in losses of Si-H groups'!
are accounted for, then values of the effective stoichiometric
ratio r’ should be lower than the initial value r.
Figure 2 is a plot of G against v,RT for trifunctional
networks, where the effective values of ' (r/r' ~1.2) have
been used to obtain the structural parameters of
the network. Better agreement between theory and
experiment is now observed. The solid line represents the
upper bound of theory (the affine modulus), as in
equation (3). The results suggest a linear relationship of
unit slope, within the limits of experimental error.
Correspondence of experimental values of G with the
calculated values of v,RT is particularly close at low
values of v,RT. Any entanglements latent in the polymer
prior to crosslinking do not seem to contribute much to
the modulus after crosslinking. The enhancement of [ f*]
at a—1 has been observed to vanish upon swelling,
suggesting it is due to difficulties in reaching elastic
equilibrium when the network chains are very long. Thus,
the behaviour observed appears to be within the
limits of the constrained-junction theory of Flory and
Erman33-3,

It is important to emphasize the non-equivalence of v
and v,. Values of the effective number of strands v
(relevant to the theory of elasticity) have been calculated
using branching theory and equation (28). In Figure 3,

0'5 |. L} L| 1 1
0.4 | -
Eo 3 | o -
= @]
O
0.2 4
o c 5°°
o O
0.1 & 4
oo
0.0 AEEN | i 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

v,RT, N mm?

Figure 2 The comparisons made in Figure I, but with correction for
side reactions in the hydrosilylation cure as outlined in the text. The
experimental data are those reported by Macosko and Benjamin®
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Figure 3 The comparisons made in Figure 2, but shown as a function
of the effective chain density v, calculated according to equation (28)
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Table 4 Elastomeric properties of the tetrafunctional PDMS networks with corrections for side reactions®

n VoRT v.RT G [/ *]n 19 ol Y
(gmol™Y) r* w, Pyu v, P K (Nmm~2) (Nmm™?) (Nmm~2) (Nmm-2?) (Nmm-?) GHRT T,
30000 1.11 0.0441 0.760 0.670 33 163 0.080 0.039 0.131 0.015 0.032 3.37 0.389
30000 1.20  0.0242 0.742 0.739 33 149  0.080 0.046 0.146 0.018 0.037 3.20 0.508
30000 132 00213 0.694 0.753 33 153 0.080 0.044 0.144 0.017 0.036 3.28 0.532
22400 1.03  0.0401 0.811 0.682 33 132 0107 0.058 0.114 0.023 0.045 1.97 0.408
22400 1.11 0.0161 0.807 0.780 34 116 0.107 0.073 0.176 0.030 0.058 242 0.580
22400 121 00173 0750 0.773 33 123 0.107 0.067 0.160 0.027 0.053 2.39 0.569
22400 1.30 00162 0.710 0.780 33 126 0107 0.064 0.151 0.025 0.051 235 0.581
11400 1.00 00157 0.884 0.783 35 79 0211 0.153 0.205 0.064 0.112 1.34 0.583
11400 1.10  0.0025 0.868 0.906 35 7.1 0211 0.182 0.291 0.079 0.137 1.60 0814
11400 113 0.0032 0.842 0.895 35 73 0211 0.175 0.262 0.075 0.132 1.50 0.791
11400 113 0.0860 0.712 0.591 32 124 0211 0.069 0.093 0.026 0.051 1.35 0.249
11400 1.17  0.0040 0.812 0.883 34 75 0211 0.169 0.295 0.071 0.127 1.74 0.770
11400 1.18  0.0014 0.823 0.929 3.5 72 0211 0.180 0.303 0.077 0.136 1.68 0.859
11400 1.19  0.0070 0.787 0.849 34 79 0211 0.155 0.221 0.064 0.116 1.43 0.705
11400 1.20  0.0029 0.800 0.900 34 7.5 0211 0.171 0.268 0.072 0.129 1.57 0.801
11400 1.30 0.0016 0.755 0.926 34 76 0211 0.167 0.276 0.068 0.126 1.66 0.853
11400 1.33 0.0078 0.716 0.843 33 85 0211 0.140 0.228 0.056 0.105 1.63 0.693
4190 1.00 00083 0912 0.838 35 45 0.574 0.460 0.343 0.200 0.304 0.75 0.678
4190 1.10  0.0052 0.851 0.870 35 45 0574 0.458 0.360 0.195 0.305 0.79 0.738
4190 120  0.0041 0.794 0.886 34 47 0574 0.443 0.461 0.184 0.296 1.04 0.768
4190 131 0.0037 0.739 0.895 34 48 0.574 0421 0.426 0.170 0.282 1.01 0.785
“The experimental results were obtained by Macosko and Benjamin®
b Corrected for hydrosilylation side reactions by a factor of r'/r=1/1.2
dependence of G on the presumably more-nearly correct 3.0 —Tr—Tr—T—r—rT
value vRT is demonstrated. Near-perfect agreement
between theory and experiment is observed at lower 25 F -
values of vRT, within limits set by the scattering of the o
data. The results so presented are well interpreted using 2.0 -
the constrained-junction theory and underscore the ln-: °
importance of distinguishing between v, and v. 2 18 g T
Another property that is of interest is the ratio G/vRT o 1.0 bore 0o _
of the small-strain modulus to the theoretical value of e 5O
the a_lﬁine modulus, in equation '(24). It is clear that its 0.5 I o o o 8 N
maximum expected value is unity. The dependence of o o)
these values on vRTis shown in Figure 4. The three points 0.0 [T TN NN R TR T
that show the largest increase above unity are those 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
for networks having M,=30000gmol™!. Such values 2
vRT, Nmm

could be due mainly to difficulties in reaching elastic
equilibrium when the network chains are very long, or
to higher slopes in the Mooney-Rivlin extrapolations?6.
This suggestion is supported by the fact that the values
of G are higher than those for networks having
M_=22400gmol?, which is the reverse of what is
expected. The fact that almost all values of G/vRT
are equal or less than unity suggests that trapped
entanglements in these networks do not play a major
role at elastic equilibrium.

The results presented in Figures 1-3 show an
unmistakable departure in the values of G from the upper
affine bound as vRT increases. Again, actual values of G
predicted by the constrained-junction theory should fall
below the upper bound even at small strain. Such
decreases in values of G with increase in crosslink
density are expected because of the decrease in chain
interpenetration as the network chain length decreases.
In previous comparisons of experiment with theory,
neglect of this factor could have led to incorrect inferences.
It is probably inappropriate to make the contributions
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Figure 4 Values of the ratio G/vRT of the experimental modulus to
the calculated affine modulus for the trifunctional PDMS networks.
The dashed line is for the affine modulus, and the experimental data®
are for trifunctional PDMS model networks

from constraints on the fluctuations a constant fraction
of the reduced stress regardless of the degree of
crosslinking. In fact, the constrained-junction theory
allows for a decrease in the degree of interpenetration as
the network chain length decreases3—3%, In the above
analysis, a substantial intercept of magnitude comparable
to those obtained in previous studies would be obtained
only upon extrapolation through the data in the region
where the affine to phantom transition ensues. This would
not be consistent with the curves consisting of two
discernible segments.

Also of interest are suggestions that topological
entanglements contribute to the small-strain modulus at
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small crosslink densities, and that direct proportionality
to chemical crosslink density is found only at high degrees
of crosslinking?®. Such conclusions could be due to
neglect of the fact that at the high temperatures employed
for hydrosilylation, network imperfections are probably
enhanced, as already mentioned. Any increase in modulus
from such entanglements would be expected to be largest
at the lower degrees of crosslinking, however, and this
was not the case?®.

Intuitively, and according to equations (9) and (10), the
modulus [ f*]. due to constraints should increase with
increase in the number of junctions p (ie. with
the degree of crosslinking). However, further increase
in the degree of crosslinking would lead to lower
values of the degree of interpenetration between chains
and junctions. Eventually, this will decrease [f*],
through decrease in «, as predicted by equation (19).
Results discussed below seem to be consistent with this
expectation. Thus, the transition proposed as being from
the plateau modulus of PDMS to the range of direct
proportionality could alternatively be interpreted as a
transition between the affine and phantom limits of
deformation with increase in the degree of crosslinking.

The results of calculations of the modulus and related
quantities from the constrained-junction theory3*36 are
illustrated in Figure 5. The small-deformation modulus
[f*]s_1, calculated from equation (9), is shown as a
function of the affine modulus expected for the effective
network chain density v. The dotted-and-dashed line
represents the upper bound (the affine limit), and the
dashed line the phantom modulus [as obtained from
equation (5)]. The dotted line represents the contribution
to the modulus from constraints on the junction
fluctuations, calculated according to equations given
elsewhere®#3%. As expected, values of [ /*],_,; are lower
than the theoretical affine modulus. It is apparent that
the theory accounts, at least qualitatively, for these
experimental observations.

It can be argued that if trapped entanglements are
operative, they should contribute to the modulus
at all deformations, i.e. to both the phantom modulus
[/*1,n and the shear modulus G. Therefore, Figure 6
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Figure § Theoretical values of the small-deformation moduli (x—1)
as obtained from the constrained-junction model and related quantities,
shown as a function of the affine modulus expected for the effective
network chain density v. The solid line represents the modulus at a—1,
the dotted-and-dashed line is for the affine modulus, and the dashed
line is for the phantom limit. The dotted curve represents the
contribution from the constraints on the junctions
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Figure 6 The Mooney-Rivlin estimate of the high-deformation
modulus shown as a function of the phantom modulus as augmented
by a term for contributions from trapped entanglements. The solid line
represents equivalence of the two types of modulus. The elastomers are
model trifunctional networks of PDMS as reported by Mark et al.??
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Figure 7 The comparisons made in Figure 1, but for tetrafunctional
PDMS networks as reported by Mark and Sullivan?? (A), Llorente
and Mark?* (O), Llorente and Mark?S (), Meyers et all”
(@) Granick et al.® (#) and Macosko and Benjamin® (O)

was prepared to show values of 2C; as a function
of [f*];n+G.T, for the results?® reported on the
trifunctional PDMS networks. The solid line represents
the assumption that entanglements contribute to the
large-strain modulus and is seen to give a poor fit of the
experimental results.

Comparisons for tetrafunctional networks are given in
Figure 7, which shows the change of G with values of
v,RT calculated from sol fractions. Again, there does not
seem to be an appreciable intercept that could be
attributed to significant contributions from trapped
entanglements. There does seem, however, to be a
transition towards the phantom limit at intermediate
values of v,RT. Figure 8 demonstrates that there is better
agreement between theory and experiment when side
reactions of the Si-H group are taken into account by
using the corrected value r to obtain the network
parameters. (As mentioned earlier, values of v, were used
as approximate substitutes for v.) The departure observed
at low values of v,RT could be due primarily to
inaccuracies in defining the initial stoichiometry. This
possible source of error was discussed in a similar
investigation®® that used the same starting materials as
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the earlier study®. The tetrafunctional crosslinking agent
was found to have an average functionality of 3.5
and a purity of ~90%3%. The resulting uncertainty in
the network structural parameters illustrates a major
problem in the study of rubber elasticity, particularly in
regard to testing the various theories. An additional
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Figure 8 The comparisons made in Figure 2, but for tetrafunctional
PDMS networks as reported by Macosko and Benjamin®
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Figure 9 Modulus shown as a function of the Mooney—Rivlin estimate
of the high-deformation modulus. The solid line is for the affine limit
for an imperfect network as approximated by 2(2C,), calculated
according to equation (40). The dashed line is for the phantom modulus
approximated by 2C, itself. The experimental points are for trifunctional
networks as reported by Mark et al.?3
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Figure 10 The comparisons made in Figure 9, but for tetrafunctional
networks as reported by Llorente and Mark?* ([J), Llorente and
Mark?® (¢) and Meyers et al.!” (@)

750 POLYMER Volume 35 Number 4 1994

problem could be difficulties arising from inhomogeneities
in the crosslinking process, as has been pointed out
elsewhere>°.

One way to avoid some of the cited difficulties in
obtaining accurate values of the network structural
parameters is to plot G 2C, +2C, against 2C, = [ f*] .
According to the Flory-Erman theory®*~3¢, [f*], is
proportional to the effective interconnectivity of the
network, and can therefore be used to define an
effective number of chains v and junctions u, regardless
of junction functionality and incompleteness of the
formation reaction. The data obtained from the literature
are plotted in Figures 9 and 10 for trifunctional?® and
tetrafunctional®”-22-24 networks, respectively. In each of
these two figures, the dashed line represents the lower
bound of the theory (the phantom limit), and the
solid line approximates the upper bound (the affinely
deforming network). The latter was calculated from
equation (26)*¢ which, for an imperfect network, gives:

[f*Jase=VRT=2{RT=2(2C,) (40)

The results are well represented within the two limits of
deformation. Again, as the degree of crosslinking is
increased, a transition toward the lower bound (the
phantom limit) is observed. This is expected, since the
constraints on the fluctuations of the junctions vanish
with an increase in either the degree of crosslinking or
the deformation. The results thus appear to be in accord
with the main premises of the constrained-junction
theory*S. Additional improvements in the agreement
between theory and experiment might be obtained by
employing the recently proposed, and more realistic,
constrained-chain theory>!.
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